由于粉末冶金技术、模具制造技术、及数控刃磨技术的高度发展,现代金属切削刀具的切削部分已可做成十分复杂的形状,其切削过程也十分复杂。一把真实的金属切削刀具,可视为一系列单元刀具的组合。研究表明,单元刀具的排屑向量(包括排屑方向与排屑速度)的自然取值总是使切削功率趋于极小,此即所谓单元刀具切削下的最小能量原理。
在切削过程中,诸单元刀具并行地进行切削,各自都力图按其自然排屑向量排出切屑。这些“各行其是”的排屑向量势必相互干涉和冲突;而为了维系各单元刀具所排出共同切屑的整体性,诸单元刀具又必须相互协调其排屑向量,以确定整体的排屑运动。研究表明,制约整体排屑运动的自然法则仍然是“最小能量原理”:即在满足由控制参数所设定的约束条件的所有可能的整体的排屑运动中,那个可以实现的整体的排屑运动,必须使整把刀具所消耗的切削总功率(即诸单元刀具所消耗的切削功率之和)取极小值。
因存在排屑干涉而必须进行排屑协调的切削过程称为“非自由切削”。几乎所有的实际切削加工工序都属于非自由切削。在非自由切削过程中,最小能量原理保证了整把刀具的切削能耗最小,但无法使每个单元刀具的实际排屑向量都与其自然排屑向量一致。事实上,经过排屑协调以后,一般来说,每个单元刀具都不得不作出适当的让步,而不能按其自然排屑向量排屑。于是,一把刀具切削的总功率,往往大于其所包含的全部单元刀具各自单独工作时的能耗之和。这体现了非自由切削过程的强烈的非线性特征。这一特征使得切削能耗上升;切屑变形复杂化,加工表面光洁度恶化;切削力上升,工艺系统的变形增加,加工精度下降;切削温度升高,刀具寿命缩短,停车换刀时间增加,效率下降,成本增加。现代切削加工中的许多问题,往往源于非自由切削的这些弊端。
本文提出了一种“单元刀具综合法”,用以解释、预测和优化形状复杂刀具的切削性能。与前人所采用的方法相比,本文所提出的方法的特点在于它基于“最小能量原理”,妥善地处理了复杂刀具的切削过程中的排屑干涉及由此引起的非线性问题。
1 非自由切削过程总体排屑运动的一般规律
1.1 单元刀具的划分与描述
设一把刀具被沿其刀刃划分成一系列单元刀具(图1)。
图1 切屑的总体运动与单元刀具的划分
各单元刀具的位置向径ρi,刀刃方向的单位向量bi,前刀面内垂直于刀刃的单位向量ai(图2),刃长Δbi,主要几何参数γoi,λsi和切削用量aci,Vi(i=1, 2, …, n),可通过对刀具进行几何分析和运动分析来获得。第i个单元刀具单位长度刀刃上的主切削力
Izoi=Izoi(γoi, λsi, aci, Vi)(i=1,2, …,n) | (1) |
和自然排屑向量
Uoi=Uoi(γoi, λsi, aci, Vi)(i=1,2,…,n) |