体积电阻表面电阻率测量仪器 说明
1.电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内:几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1 at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。
2.由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V -100 W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。
3.电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的能力大小。
4.超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻。
体积电阻表面电阻率测量仪器 电阻的作用:
电阻在电路中的作用:利用著名的欧姆定律可以利用电阻控制电路中的电压、电流。
电阻的主要物理特征就是可以变电能为热能,因此热水器中的发热元件、电灯泡、电烫斗就是利用了电阻的作用制成的。另外电阻有怕热的特性,当导体材料温度升高时材料的电阻率会增大(有些材料则表现为减小),因此利用电阻的这种特性可以制作温度测量计(不知道你看见过没,插一根“铁丝”就能测量温度的方法就是利用了这种电阻材料作用的)。
另外一些材料的电阻还会受到光线照射的印象,而利用这样的材料可以制成光敏电阻,利用这点作用可以方便的设计光控电路以及光的测量和光电转换等领域。
方法
测量高电阻常用的方法是直接法或比较法。
直接法是测量加在试样上的直流电压和流过它的电流(伏安法)而求得未知电阻。
比较法是确定电桥线路中试样未知电阻与电阻器已知电阻之间的比值,或是在固定电压下比较通过这两种电阻的电流。
附录A给出了描述这些原理的例子。
伏安法需要一适当精度的伏特表,但该方法的灵敏度和度主要取决于电流测量装置的性能,该装置可以是一个检流计或电子放大器或静电计。
电桥法只需要一灵敏的电流检测器作为零点指示器,测量度主要取决于已知的桥臂电阻器,这些桥臂电阻应在宽的电阻值范围内具有高的精密度和稳定性。
电流比较法的度取决于已知电阻器的度和电流测量装置,包括与它相连的测量电阻器的稳定度和线性度。只要电压是恒定的,电流的确切数值并不重要。
对于不大于1011Ω的电阻,可以按照11.1用检流计采用伏特计一安培计法来测定其体积电阻率。 对于较高的电阻,则推荐使用直流放大器或静电计。
在电桥法中,不可能直接测量短路试样中的电流(见11.1)。
利用电流测量装置的方法可以自动记录电流,以简化稳态测试过程(见11.1)。
现己有测量高电阻的一些专门的线路和仪器。只要它们有足够的度和稳定度,且在需要时能使试样短路并在电化前测量电流者,均可使用。
电阻定律
导体的电阻R跟它的长度L、电阻率ρ成正比,跟它的横截面积S成反比,这个规律就叫电阻定律(law of resistance),公式为R=ρL/S。其中ρ:制成电阻的材料的电阻率,L:绕制成电阻的导线长度,S:绕制成电阻的导线横截面积,R:电阻值。
公式:R=ρL/S,R=U/I
ρ——制成电阻的材料电阻率,国际单位制为欧姆 ? 米(Ω ?m);
L——绕制成电阻的导线长度,国际单位制为米(m);
S——绕制成电阻的导线横截面积,国际单位制为平方米(m2) ;
R——电阻值,国际单位制为欧姆,简称欧(Ω);
U——电压值,国际单位制为伏特,简称伏(v);
I——电流值,国际单位制为安培,简称安(A)。
其中:
ρ叫电阻率:某种材料制成的长1米、横截面积是1平方毫米的导线的电阻,叫做这种材料的电阻率。是描述材料性质的物理量。国际单位制中,电阻率的单位是欧姆?米,常用单位是欧姆?平方毫米/米。与导体长度L,横截面积S无关,只与物体的材料和温度有关,有些材料的电阻率随着温度的升高而增大,有些反之。
影响电阻率的外界因素
电阻率不仅与材料种类有关,而且还与温度、压力和磁场等外界因素有关。金属材料在温度不高时,ρ与温度t(℃)的关系是ρt=ρ0(1 at),式中ρt与ρ0分别是t℃和0℃时的电阻率;α是电阻率的温度系数,与材料有关。锰铜的α约为1?10-1/℃(其数值极小),用其制成的电阻器的电阻值在常温范围下随温度变化极小,适合于作标准电阻。已知材料的ρ值随温度而变化的规律后,可制成电阻式温度计来测量温度。半导体材料的α一般是负值且有较大的量值。制成的电阻式温度计具有较高的灵敏度。有些金属(如Nb和Pb)或它们的化合物,当温度降到几K或十几K(绝对温度)时,ρ突然减少到接近零,出现超导现象,超导材料有广泛的应用前景。利用材料的ρ随磁场或所受应力而改变的性质,可制成磁敏电阻或电阻应变片,分别被用来测量磁场或物体所受到的机械应力,在工程上获得广泛应用。
测试步骤:
1、测试温度23?2℃,相对湿度65?5%,无外界电磁场干扰环境中进行。
2、测试时对试样所加电压为100V~500V的直流电压,选择电压档次。
3、将试样倒入高压电极内,使液面刚好和环电极下缘全部接触为止。
4、将充分放电后的试样和电极,按固体(液体)体积及表面电阻率测试仪要求接线。
外电极(高压电极)接高固体(液体)体积及表面电阻率测试仪的高压输出端。
内电极(测量电极)接固体(液体)体积及表面电阻率测试仪的测量端。
中电极(环电极)接固体(液体)体积及表面电阻率测试仪的接地端。
5、仪器预热30分钟,稳定后调整仪器(调零),加上试验1分钟,读取电阻指示值,然后放电1分钟,再测试一次,以二次的算术平均值作为试验样品电阻指示值。
测量指标
1、电阻测量范围:1?104Ω ~1?1018Ω。
2、电流测量范围:2?10-4A~1?10-16A
3、显 示 方 式:数字液晶显示
4、内置测试电压:10V、50V、100V、250V、500V、1000V(任意切换)
5、基本准确度:1% (*注)
6、使用环境: 温度:0℃~40℃,相对湿度<80%
7、供电形式:AC 220V,50HZ,功耗约5W
8、仪器尺寸:285mm?245mm?120 mm
9、质量: 约5KG
10、体积小、重量轻、准确度高,电阻、电流双显示,性能好稳定、读数方便
使用方法
1接好电源线
确保电源为220VAC/50Hz
2接通电源
将电流电阻量程置于104档,电压量程置于10V,然后开机。
3调零
在“Rx”两端开路的情况下,调零使电流表的显示为0000 .注意:在“Rx”两端不开路,如接在电阻箱或被测量物体上时调零后测量会产生很大的误差。一般一次调零后在测试过程中不需再调零。 完毕后关机。
4连接线路
接好测试线,将测试线将主机与屏蔽箱连接好,测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边。然后开机。
5选择合适的测量电压
电压选择开关在后面板,注意,在测试过程中不要随意改动测量电压,可能因电压的过高或电流过大损坏被测试器件或测试仪器;
6测试
测量时从低档位逐渐拔往高档,每拨一次稍停留1~2秒以使观察显示数字, 当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置,当测量仪器有显示值时应停下,当前的数字乘以档次即是被测电阻值。当有显示数字时不要再往更高次档拨,否测仪器会过量程,机内保护电路开始工作,仪器测量准确度会下降。
7测试完毕将电阻电流量程拔至“104”档,电压量程调至10V后关闭电源
每测量一次均应将量程开关拨回到104“调零”档的量程位置以免开机或测量端短路时而损坏仪器。6.8测量电流及1015Ω以上超高电阻的测量应用测量电流后用欧姆定律以电压除以电流计算电阻的方法,详见8.5节内容。
8体积电阻和表面电阻转换
在测试过程中,使用屏蔽箱在进行体积电阻和表面电阻转换时,必须把电源关闭后进行档位转换,否则会导致电压冲击到主机无法显示或损坏。
测试
测量时从低档位逐渐拔往高档,每拨一次稍停留1~2秒以使观察显示数字, 当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置,当测量仪器有显示值时应停下,当前的数字乘以档次即是被测电阻值。当有显示数字时不要再往更高次档拨,否测仪器会过量程,机内保护电路开始工作,仪器测量准确度会下降。
产品特点:
本仪器具有精度高、显示迅速、稳定性好、读数方便,适用于防静电产品 如防静电鞋、防静电塑料橡胶制品、计算机房防树脂云母体积表面电阻率测试仪静电活动地板等电阻值的检验以及绝缘材料和电子电器产品的绝缘电阻测量。本仪器除能测电阻外,还能直接测量电流如电子器件暗电流等
典型应用
1.硫化橡胶体积、表面电阻率测定
2.测量防静电鞋、导电鞋的电阻值
3.测量防静电材料的电阻及电阻率
4.测量计算机房用活动地板的系统电阻值
5.测量绝缘材料电阻(率)
6.光电二极管暗电流测量
7.物理,光学和材料研究
8.高分子材料表面体积电阻率测定
安全注意事项
1.使用前务必详阅此说明书,并遵照指示步骤,依次操作。
2.请勿使用非原厂提供之附件,以免发生危险。
3.进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以
免触电。
4.为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬
空,不与外界物体相碰。
5.当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
应满足下例要求:
1、测试电压范围应包括:100V~500V
2、测量范围应包括:1?106Ω~1?1017Ω
3、阻值大于1012Ω时,测量误差应小于?20%,阻值不大于1012Ω时,测量误差应小于?10%。
4、输入接线的绝缘电阻应大于仪器输入电阻的100倍。
5、测试时试样及测量导线应有良好。
6、仪器应定期进行校验。
电阻率的计算公式为:
ρL
R=—
S
ρ为电阻率——常用单位Ω?mm2/m
S为横截面积——常用单位㎡
R为电阻值——常用单位Ω
L为导线的长度——常用单位m
温度影响
温度对不同物质的电阻值均有不同的影晌。
导电体在接近室温的温度,良导体的电阻值,通常与温度成线性关系:
ρ=ρ0(1 αt)
上式中的a称为电阻的温度系数。
未经掺杂的半导体的电阻随温度升高而下降:
有掺杂的半导体变化较为复杂。当温度从绝对零度上升,半导体的电阻先是减少,到了绝大部分的带电粒子(电子或电洞/空穴) 离开了它们的载体后,电阻会因带电粒子的活动力下降而随温度稍为上升。当温度升得更高,半导体会产生新的载体 (和未经掺杂的半导体一样) ,原有的载体 (因渗杂而产生者) 重要性下降,于是电阻会再度下降。
绝缘体和电解质绝缘体和电解质的电阻与温度的关系一般不成比例,而且不同物质有不同的变化,故不在此列出概括性的算式。
电源
要求有很稳定的直流电压源。这可用蓄电油或一个整流稳压的电摞来提供。对电源的稳定度要求是由电压变化导致的电流变化与被测电流相比可忽略不计。
加到整个试样上的试验电压通常规定为100V、250V、500V、1000 V、2500 V、5000 V, 10000 V和15000 V。 常用的电压是100V、500V和1000 V。
在某些情况下,试样的电阻与施加电压的极性有关
如果电阻是与极性有关的,则宜加以注明。取两次电阻值的几何平均值(对数算术平均值的反对数)作为结果。
由于试样电阻可能与电压有依存关系,因此应在报告中注明试验电压值。
微分电阻
如电阻跟随电压及电流变动,则可定义微分电阻为:
dU
r=--
dI
微分电阻的单位仍为欧姆,惟微分电阻值与基本的电阻值并不一致。微分电阻值有可能因有关仪器的特性而出现负值,称为负电阻。然而,基本电阻(即电压与电流的商)永远为正值。
保护
组成测量线路的绝缘材料,好应具有与被试材料差不多的性能。试样的测量误差可以由下列原因产生:
a)外来寄生电压引起的杂散电流,通常不知道它的大小,并具有漂移的特点;
b)具有未知而易变的电阻值的绝缘与试样电阻、标准电阻器或电流测量装置的不正常的分路。 使线路所有部分在使用状态下有尽可能高的绝缘电阻来近似地修正这些影响因素。这种做法可能导致测试设备很笨重,而又不足以测量高于几百兆欧的绝缘电阻。较为满意的修正方法是使用保护技术来实现。
保护就是在所有关键的绝缘部位插入保护导体,保护导体截住所有可能引起误差的杂散电流。这些保护导体联接在一起,组成保护系统并与测量端形成兰端网络。当线路联接恰当时,所有外来寄生电压产生的杂散电流被保护系统分流到测量电路以外,任一测量瑞到保护系统的绝缘电阻与一电阻低得多的线路元件并联,试样电阻仅限于两测量端之间。采用这个技术可大大地减小误差概率。图1为使 用保护电极测量体积电阻和表面电阻的基本线路。
图5和图7给出了电流测量法中保护系统的使用方法,图中指出保护系统接到电源和电流测量装 置的连接点。图6表示惠斯登电桥法,其保护系统接到两个较低电阻值的桥臂的连接点上。在所有情况下,保护系统必须完善,包括对测试人员在测量时操作的任何控制仪器的保护。
在保护端和被保护端之间所存在的电解电动势、接触电动势或热电动势较小时,均能被补偿掉,使这样的电动势在测量中不会引人显著的误差。
在电流测量法中,由于电流测量装置与被保护端和保护系统之间的电阻并联可能产生误差,因此,这个电阻宜至少为电流测量装置电阻的10倍,好为100倍。在有些电桥法中,保护端和测量端具有 大致相同的电位,不过电桥中的→个标准电阻器与不保护端和保护系统之间的电阻是并联的。这个电 阻应至少为标准电阻的10倍,好为100倍。
为确保设备的操作令人满意,应先断开电源和试样的连线进行一次测量。此时,设备应在它的灵敏度许可范围内指示出元穷大的电阻。如果有一些己知电阻值的标准电阻,则可用来检查设备运行是否良好。
产品保修承诺:
1、免费送货到用户指定的地点,免费指导安装、培训及调试。
2、保修期内人为损坏的零部件按采购(加工)价格收费更换。
3、保修期外继续为用户提供优质技术服务,在接到用户维修邀请后3天内派工程师到达用户现场进行维修。并享有优惠购买零配件的待遇。
4、传感器过载及整机电路超压损坏不在保修范围内。
5、产品质保期:自安装正常使用日起一年;
6、软件升级:终生免费提供新版本控制软件。
业务咨询:932174181 媒体合作:2279387437 24小时服务热线:15136468001 盘古机械网 - 全面、科学的机械行业免费发布信息网站 Copyright 2017 PGJXO.COM 豫ICP备12019803号